Two modes of gating during late Na+ channel currents in frog sartorius muscle

نویسندگان

  • JB Patlak
  • M Ortiz
چکیده

Na+ currents were measured during 0.4-s depolarizing pulses using the cell-attached variation of the patch-clamp technique. Patches on Cs-dialyzed segments of sartorius muscle of Rana pipiens contained an estimated 25-500 Na+ channels. Three distinct types of current were observed after the pulse onset: a large initial surge of inward current that decayed within 10 ms (early currents), a steady "drizzle" of isolated, brief, inward unitary currents (background currents), and occasional "cloudbursts" of tens to hundreds of sequential unitary inward currents (bursts). Average late currents (background plus bursts) were 0.12% of peak early current amplitude at -20 mV. 85% of the late currents were carried by bursting channels. The unit current amplitude was the same for all three types of current, with a conductance of 10.5 pS and a reversal potential of +74 mV. The magnitudes of the three current components were correlated from patch to patch, and all were eliminated by slow inactivation. We conclude that all three components were due to Na+ channel activity. The mean open time of the background currents was approximately 0.25 ms, and the channels averaged 1.2 openings for each event. Neither the open time nor the number of openings of background currents was strongly sensitive to membrane potential. We estimated that background openings occurred at a rate of 0.25 Hz for each channel. Bursts occurred once each 2,000 pulses for each channel (assuming identical channels). The open time during bursts increased with depolarization to 1-2 ms at -20 mV, whereas the closed time decreased to less than 20 ms. The fractional open time during bursts was fitted with m infinity 3 using standard Na+ channel models. We conclude that background currents are caused by a return of normal Na+ channels from inactivation, while bursts are instances where the channel's inactivation gate spontaneously loses its function for prolonged periods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skeletal muscle Na currents in mice heterozygous for Six5 deficiency.

Myotonic dystrophy results from a trinucleotide repeat expansion between the myotonic dystrophy protein kinase gene (Dmpk), which encodes a serine-threonine protein kinase, and the Six5 gene, which encodes a homeodomain protein. The disease is characterized by late bursts of skeletal muscle Na channel openings, and this is recapitulated in Dmpk -/- and Dmpk +/- murine skeletal muscle. To test w...

متن کامل

Gating of Na Channels Inactivation Modifiers Discriminate among Models TOHRU GONOI

Macroscopic Na currents were recorded from N 18 neuroblastoma cells by the whole-cell voltage-clamp technique . Inactivation of the Na currents was removed by intracellular application of proteolytic enzymes, trypsin, a-chymotrypsin, papain, or ficin, or bath application of N-bromoacetamide . Unlike what has been reported in squid giant axons and frog skeletal muscle fibers, these treatments of...

متن کامل

Altered sodium and gating current kinetics in frog skeletal muscle caused by low external pH

The effect of low pH on the kinetics of Na channel ionic and gating currents was studied in frog skeletal muscle fibers. Lowering external pH from 7.4 to 5.0 slows the time course of Na current consistent with about a +25-mV shift in the voltage dependence of activation and inactivation time constants. Similar shifts in voltage dependence adequately describe the effects of low pH on the tail cu...

متن کامل

Gating of Na channels. Inactivation modifiers discriminate among models

Macroscopic Na currents were recorded from N18 neuroblastoma cells by the whole-cell voltage-clamp technique. Inactivation of the Na currents was removed by intracellular application of proteolytic enzymes, trypsin, alpha-chymotrypsin, papain, or ficin, or bath application of N-bromoacetamide. Unlike what has been reported in squid giant axons and frog skeletal muscle fibers, these treatments o...

متن کامل

Temperature dependence of Na currents in rabbit and frog muscle membranes

The effect of temperature (0-22 degrees C) on the kinetics of Na channel conductance was determined in voltage-clamped rabbit and frog skeletal muscle fibers using the triple-Vaseline-gap technique. The Hodgkin-Huxley model was used to extract kinetic parameters; the time course of the conductance change during step depolarization followed m3h kinetics. Arrhenius plots of activation time consta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 87  شماره 

صفحات  -

تاریخ انتشار 1986